In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)).
If p is a prime, and G is the absolute Galois group of the rational numbers, the p-adic cyclotomic character is a group homomorphism
where Zp× is the group of units of the ring of p-adic integers. This homomorphism is defined as follows. Let ζn be a primitive pn root of unity. Every pn root of unity is a power of ζn uniquely defined as an element of the ring of integers modulo pn. Primitive roots of unity correspond to the invertible elements, i.e. to (Z/pn)×. An element g of the Galois group G sends ζn to another primitive pn root of unity
where ag,n ∈ (Z/pn)×. For a given g, as n varies, the ag,n form a comptatible system in the sense that they give an element of the inverse limit of the (Z/pn)×, which is Zp×. Therefore, the p-adic cyclotomic character sends g to the system (ag,n)n, thus encoding the action of g on all p-power roots of unity.