*** Welcome to piglix ***

Cyclic olefin copolymer

Cyclic Olefin Copolymer
Cyclic Olefin Copolymer.png
Names
Other names
Ethylene Copolymer; COC;
Cyclo Olefinecopolymer;
Cyclic Olefin Polymer;
Ethylene-norbornene Copolymer
Identifiers
3D model (JSmol)
ChemSpider
Properties
Appearance Clear Resin
Density 1.02 g/cm³, solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Cyclic Olefin Copolymer (COC) is an amorphous polymer made by several polymer manufacturers. COC is a relatively new class of polymers as compared to commodities such as polypropylene and polyethylene. This newer material is used in a wide variety of applications including packaging films, lenses, vials, displays, and medical devices.

In 2005 there were "several types of commercial cyclic olefin copolymers based on different types of cyclic monomers and polymerization methods. Cyclic olefin copolymers are produced by chain copolymerization of cyclic monomers such as 8,9,10-trinorborn-2-ene (norbornene) or 1,2,3,4,4a,5,8,8a-octahydro-1,4:5,8-dimethanonaphthalene (tetracyclododecene) with ethene (such as TOPAS Advanced Polymer's TOPAS, Mitsui Chemical’s APEL), or by ring-opening metathesis polymerization of various cyclic monomers followed by hydrogenation (Japan Synthetic Rubber’s ARTON, Zeon Chemical’s Zeonex and Zeonor)." These later materials using a single type of monomer are more properly named cyclic olefin polymers (COP).

Typical COC material will have a higher modulus than HDPE and PP, similar to PET or PC. COC also has a high moisture barrier for a clear polymer along with a low moisture absorption rate. In medical and analytical applications, COC is noted to be a high purity product with low extractables. COC is also a halogen-free and BPA-free product. Some grades of COC have shown a lack of estrogenic activity.

The optical properties of COC are exceptional, and in many ways very similar to glass. COC materials offer exceptional transparency, low birefringence, high Abbe number and high heat resistance. The moisture insensitivity of COC is often an advantage over competing materials such as polycarbonate and acrylics. The high flow of COC enables higher aspect ratio (large yet thin) optical component fabrication than other optical polymers. High ultraviolet transmission is a hallmark of COC materials, with optimized grades the leading polymer alternatives to quartz glass in analytical and diagnostic applications.


...
Wikipedia

...