*** Welcome to piglix ***

Cycle (algebraic topology)


In algebraic topology, a simplicial k-chain is a formal linear combination of k-simplices.

Integration is defined on chains by taking the linear combination of integrals over the simplices in the chain with coefficients typically integers. The set of all k-chains forms a group and the sequence of these groups is called a chain complex.

The boundary of a chain is the linear combination of boundaries of the simplices in the chain. The boundary of a k-chain is a (k−1)-chain. Note that the boundary of a simplex is not a simplex, but a chain with coefficients 1 or −1 – thus chains are the closure of simplices under the boundary operator.

Example 1: The boundary of a path is the formal difference of its endpoints: it is a telescoping sum. To illustrate, if the 1-chain is a path from point to point , where , and are its constituent 1-simplices, then


...
Wikipedia

...