In theoretical physics, the Curtright field (named after Thomas Curtright) is a tensor quantum field of mixed symmetry, whose gauge-invariant dynamics are dual to those of the general relativistic graviton in higher (D>4) spacetime dimensions. Or at least this holds for the linearized theory. For the full nonlinear theory, less is known. Several difficulties arise when interactions of mixed symmetry fields are considered, but at least in situations involving an infinite number of such fields (notably string theory) these difficulties are not insurmountable.
In four spacetime dimensions, the field is not dual to the graviton, if massless, but it can be used to describe massive, pure spin 2 quanta. Similar descriptions exist for other massive higher spins, in D≥4.
The simplest example of the linearized theory is given by a rank three Lorentz tensor whose indices carry the permutation symmetry of the Young diagram corresponding to the integer partition 3=2+1. That is to say, and where indices in square brackets are totally antisymmetrized. The corresponding field strength for is This has a nontrivial trace where is the Minkowski metric with signature (+,−,−,...).