*** Welcome to piglix ***

Cubic root


In mathematics, a cube root of a number x is a number such that a3 = x. All real numbers (except zero) have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted 38, is 2, because 23 = 8, while the other cube roots of 8 are −1 + 3i and −1 − 3i. The three cube roots of −27i are

The cube root operation is not associative or distributive with addition or subtraction.

In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the principal cube root, denoted with the radical sign 3. The cube root operation is associative with exponentiation and distributive with multiplication and division if considering only real numbers, but not always if considering complex numbers: for example, the cube of any cube root of 8 is 8, but the three cube roots of 83 are 8, −4 + 4i3, and −4 − 4i3.

The cube roots of a number x are the numbers y which satisfy the equation

For any real number y, there is one real number x such that x3 = y. The cube function is increasing, so does not give the same result for two different inputs, plus it covers all real numbers. In other words, it is a bijection, or one-to-one. Then we can define an inverse function that is also one-to-one. For real numbers, we can define a unique cube root of all real numbers. If this definition is used, the cube root of a negative number is a negative number.


...
Wikipedia

...