The critical path method (CPM), or critical path analysis (CPA), is an algorithm for scheduling a set of project activities. It is commonly used in conjunction with the program evaluation and review technique (PERT).
The critical path method (CPM) is a project modeling technique developed in the late 1950s by Morgan R. Walker of DuPont and James E. Kelley Jr. of Remington Rand. Kelley and Walker related their memories of the development of CPM in 1989. Kelley attributed the term "critical path" to the developers of the Program Evaluation and Review Technique which was developed at about the same time by Booz Allen Hamilton and the U.S. Navy. The precursors of what came to be known as Critical Path were developed and put into practice by DuPont between 1940 and 1943 and contributed to the success of the Manhattan Project.
CPM is commonly used with all forms of projects, including construction, aerospace and defense, software development, research projects, product development, engineering, and plant maintenance, among others. Any project with interdependent activities can apply this method of mathematical analysis. The first time CPM was used for major skyscraper development was in 1966 while constructing the former World Trade Center Twin Towers in NYC. Although the original CPM program and approach is no longer used, the term is generally applied to any approach used to analyze a project network logic diagram.
The essential technique for using CPM: is to construct a model of the project that includes the following:
Using these values, CPM calculates the longest path of planned activities to logical end points or to the end of the project, and the earliest and latest that each activity can start and finish without making the project longer. This process determines which activities are "critical" (i.e., on the longest path) and which have "total float" (i.e., can be delayed without making the project longer). In project management, a critical path is the sequence of project network activities which add up to the longest overall duration, regardless if that longest duration has float or not. This determines the shortest time possible to complete the project. There can be 'total float' (unused time) within the critical path. For example, if a project is testing a solar panel and task 'B' requires 'sunrise', there could be a scheduling constraint on the testing activity so that it would not start until the scheduled time for sunrise. This might insert dead time (total float) into the schedule on the activities on that path prior to the sunrise due to needing to wait for this event. This path, with the constraint-generated total float would actually make the path longer, with total float being part of the shortest possible duration for the overall project. In other words, individual tasks on the critical path prior to the constraint might be able to be delayed without elongating the critical path; this is the 'total float' of that task. However, the time added to the project duration by the constraint is actually critical path drag, the amount by which the project's duration is extended by each critical path activity and constraint.