Crevice corrosion refers to corrosion occurring in confined spaces to which the access of the working fluid from the environment is limited. These spaces are generally called crevices. Examples of crevices are gaps and contact areas between parts, under gaskets or seals, inside cracks and seams, spaces filled with deposits and under sludge piles.
This photo shows that corrosion occurred in the crevice between the tube and tube sheet (both made of type 316 stainless steel) of a heat exchanger in a sea water desalination plant.
The corrosion resistance of a stainless steel is dependent on the presence of an ultra-thin protective oxide film (passive film) on its surface, but it is possible under certain conditions for this oxide film to break down, for example in halide solutions or reducing acids. Areas where the oxide film can break down can also sometimes be the result of the way components are designed, for example under gaskets, in sharp re-entrant corners or associated with incomplete weld penetration or overlapping surfaces. These can all form crevices which can promote corrosion. To function as a corrosion site, a crevice has to be of sufficient width to permit entry of the corrodent, but narrow enough to ensure that the corrodent remains stagnant. Accordingly crevice corrosion usually occurs in gaps a few micrometres wide, and is not found in grooves or slots in which circulation of the corrodent is possible. This problem can often be overcome by paying attention to the design of the component, in particular to avoiding formation of crevices or at least keeping them as open as possible. Crevice corrosion is a very similar mechanism to pitting corrosion; alloys resistant to one are generally resistant to both. Crevice corrosion can be viewed as a less severe form of localized corrosion when compared with pitting. The depth of penetration and the rate of propagation in pitting corrosion are significantly greater than in crevice corrosion.
Crevices can develop a local chemistry which is very different from that of the bulk fluid. For example, in boilers, concentration of non-volatile impurities may occur in crevices near heat-transfer surfaces because of the continuous water vaporization. "Concentration factors" of many millions are not uncommon for common water impurities like sodium, sulfate or chloride. The concentration process is often referred to as "hideout" (HO), whereas the opposite process, whereby the concentrations tend to even out (e.g., during shutdown) is called "hideout return" (HOR). In a neutral pH solution, the pH inside the crevice can drop to 2, a highly acidic condition that accelerates the corrosion of most metals and alloys.