In a geological context, crenulation or crenulation cleavage is a fabric formed in metamorphic rocks such as phyllite, schist and some gneiss by two or more stress directions causing the formation of the superimposed foliations.
Crenulations form when an early planar fabric is overprinted by a later planar fabric. Crenulations form by recrystallisation of mica minerals during metamorphism. Micaceous minerals form planar surfaces known as foliations perpendicular to the principal stress field. If a rock is subjected to two separate deformations and the second deformation is at some other angle to the original, growth of new micas on the foliation planes will create a new foliation plane perpendicular to the plane of principal stress. The angular intersection of the two foliations causes a diagnostic texture called a crenulation, which may involve folding of the earlier mica foliations by the later foliation.
Recognising a crenulation in a rock may require inspecting the rock with a hand-lens or petrographic microscope in thin section. Crenulations may be very cryptic, and there may be several recorded within a rock and especially, entrained within porphyroblasts.
Crenulations may manifest as kinking of previous foliation, such that the original foliation appears to be lined or inscribed by a later foliation.
In more advanced states, the later foliation will tend to form distinct foliation planes cross-cutting the earlier foliation, resulting in breaking, warping, and micro-scale folding of the earlier foliation into the new foliation.
When the crenulation foliation begins to dominate it may totally or almost completely wipe out the original foliation. This process occurs at different rates in rocks and beds of different lithology and chemical composition so that it is usually valuable to look at a variety of outcrops to gain a better appreciation of the effect of crenulation or discover the orientation or presence of earlier foliations.