In mathematics, the counting measure is an intuitive way to put a measure on any set: the "size" of a subset is taken to be the number of elements in the subset, if the subset has finitely many elements, and ∞ if the subset is infinite.
The counting measure can be defined on any measurable set, but is mostly used on countable sets.
In formal notation, we can make any set X into a measurable space by taking the sigma-algebra of measurable subsets to consist of all subsets of . Then the counting measure on this measurable space is the positive measure defined by