*** Welcome to piglix ***

Coulter principle


A Coulter counter is an apparatus for counting and sizing particles suspended in electrolytes. It is used for cells, bacteria, prokaryotic cells and virus particles.

A typical Coulter counter has one or more microchannels that separate two chambers containing electrolyte solutions. As fluid containing particles or cells is drawn through each microchannel, each particle causes a brief change to the electrical resistance of the liquid. The counter detects these changes in electrical resistance.

The Coulter principle states that particles pulled through an orifice, concurrent with an electric current, produce a change in impedance that is proportional to the volume of the particle traversing the orifice. This pulse in impedance originates from the displacement of electrolyte caused by the particle. The Coulter principle was named for its inventor, Wallace H. Coulter. The principle has found commercial success in the medical industry, particularly in hematology, where it can be applied to count and size the various cells that make up whole blood.

Cells, being poorly conductive particles, alter the effective cross-section of the conductive microchannel. If these particles are less conductive than the surrounding liquid medium, the electrical resistance across the channel increases, causing the electric current passing across the channel to briefly decrease. By monitoring such pulses in electric current, the number of particles for a given volume of fluid can be counted. The size of the electric current change is related to the size of the particle, enabling a particle size distribution to be measured, which can be correlated to mobility, surface charge, and concentration of the particles.

The Coulter Counter is a vital constituent of today's hospital laboratory. Its primary function being the quick and accurate analysis of complete blood counts (often referred to as CBC). The CBC is used to determine the number or proportion of white and red blood cells in the body. Previously, this procedure involved preparing a blood cell stain and manually counting each type of cell under a microscope, a process that typically took a half-hour.


...
Wikipedia

...