Correspondence analysis (CA) is a multivariate statistical technique proposed by Hirschfeld and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it provides a means of displaying or summarising a set of data in two-dimensional graphical form.
All data should be nonnegative and on the same scale for CA to be applicable, keeping in mind that the method treats rows and columns equivalently. It is traditionally applied to contingency tables — CA decomposes the chi-squared statistic associated with this table into orthogonal factors. Because CA is a descriptive technique, it can be applied to tables whether or not the statistic is appropriate.
Like principal components analysis, correspondence analysis creates orthogonal components and, for each item in a table, a set of scores (sometimes called factor scores, see Factor analysis). Correspondence analysis is performed on a contingency table, C, of size m×n where m is the number of rows and n is the number of columns.
From table C, compute a set of weights for the columns and the rows (sometimes called masses), where row weights are
and column weights are
Next, compute a table S (called the stochastic matrix), where C is divided by the sum of C