A coronagraph is a telescopic attachment designed to block out the direct light from a star so that nearby objects – which otherwise would be hidden in the star's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments (called stellar coronagraphs to distinguish them from solar coronagraphs) are being used to find extrasolar planets and circumstellar disks around nearby stars.
The coronagraph was introduced in 1931 by the French astronomer Bernard Lyot; since then, coronagraphs have been used at many solar observatories. Coronagraphs operating within Earth's atmosphere suffer from scattered light in the sky itself, due primarily to Rayleigh scattering of sunlight in the upper atmosphere. At view angles close to the Sun, the sky is much brighter than the background corona even at high altitude sites on clear, dry days. Ground based coronagraphs, such as the High Altitude Observatory's Mark IV Coronagraph on top of Mauna Loa, use polarization to distinguish sky brightness from the image of the corona: both coronal light and sky brightness are scattered sunlight and have similar spectral properties, but the coronal light is Thomson-scattered at nearly a right angle and therefore undergoes scattering polarization, while the superimposed light from the sky near the Sun is scattered at only a glancing angle and hence remains nearly unpolarized.