*** Welcome to piglix ***

Copper(I) thiocyanate

Copper(I) thiocyanate
CuSCN (I think alpha phase).jpg
Copper(I) thiocyanate
Names
Other names
Cuprous thiocyanate
Identifiers
1111-67-7
ChemSpider 55204
PubChem 24857968
Properties
CuSCN
Molar mass 121.628 g/mol
Appearance white powder
Density 2.88 g/cm3
Melting point 1,084 °C (1,983 °F; 1,357 K)
8.427·10−7 g/L (20 °C)
-48.0·10−6 cm3/mol
Related compounds
Other anions
Copper(I) iodide, copper(I) cyanide
Other cations
Ammonium thiocyanate
Potassium thiocyanate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Copper(I) thiocyanate (or cuprous thiocyanate) is a coordination polymer with formula CuSCN. It is an air-stable, white solid used as a precursor for the preparation of other thiocyanate salts.

Two polymorphs have been characterized. The one pictured above features copper(I) in a characteristic tetrahedral coordination geometry. The sulfur end of the SCN- ligand is triply bridging.

Copper(I) thiocyanate forms from the spontaneous decomposition of dry black copper(II) thiocyanate, releasing thiocyanogen, especially when heated. It is also formed from copper(II) thiocyanate under water, releasing (among others) thiocyanic acid and the highly poisonous hydrogen cyanide.
It is conveniently prepared from solutions of copper(II) in water, such as copper(II) sulphate. To a copper(II) solution sulphurous acid is added and then a soluble thiocyanate is added (preferably slowly, while stirring). Copper(I) thiocyanate is precipitated as a white powder. Alternatively, a thiosulfate solution may be used as a reducing agent.

Copper(I) thiocyanate forms one double salt with the group 1 elements, CsCu (SCN)2. The double salt only forms from concentrated solutions of CsSCN, into which CuSCN dissolves. From less concentrated solutions, solid CuSCN separates reflecting its low solubility. When brought together with potassium, sodium or barium thiocyanate, and brought to crystallisation by concentrating the solution, mixed salts will crystallise out. These are not considered true double salts. As with CsCu (SNC)2, copper(I) thiocyanate separates out when these mixed salts are redissolved or their solutions diluted.

Copper(I) thiocyanate is a hole conductor, a semiconductor with a wide band gap (3.6 eV, therefore transparent to visible and near infrared light). It is used in photovoltaics in some third-generation cells as a hole transfer layer. It acts as a P-type semiconductor and as a solid-state electrolyte. It is often used in dye-sensitized solar cells. Its hole conductivity is however relatively poor (0.01 S.m−1. This can be improved by various treatments, e.g. exposure to gaseous chlorine or doping with (SCN)2.


...
Wikipedia

...