*** Welcome to piglix ***

Coordination (physiology)


Motor coordination is the combination of body movements created with the kinematic (such as spatial direction) and kinetic (force) parameters that result in intended actions. Motor coordination is achieved when subsequent parts of the same movement, or the movements of several limbs or body parts are combined in a manner that is well timed, smooth, and efficient with respect to the intended goal. This involves the integration of proprioceptive information detailing the position and movement of the musculoskeletal system with the neural processes in the brain and spinal cord which control, plan, and relay motor commands. The cerebellum plays a critical role in this neural control of movement and damage to this part of the brain or its connecting structures and pathways results in impairment of coordination, known as ataxia.

Examples of motor coordination are the ease with which people can stand up, pour water into a glass, walk, and reach for a pen. These are created reliably, proficiently and repeatedly, but these movements rarely are reproduced exactly in their motor details, such as joint angles when pointing or standing up from sitting.

The complexity of motor coordination can be seen in the task of picking up a bottle of water and pouring it in a glass. This apparently simple task is actually a combination of complex tasks that are processed at different levels. The levels of processing include: (1) for the prehension movement to the bottle, the reach and hand configuration have to be coordinated, (2) when lifting the bottle, the load and the grip force applied by the fingers need to be coordinated to account for weight, fragility, and slippage of the glass, and (3) when pouring the water from the bottle to the glass, the actions of both arms, one holding the glass and the other that is pouring the water, need to be coordinated with each other. This coordination also involves all of the eye–hand coordination processes. The brain interprets actions as spatial-temporal patterns and when each hand performs a different action simultaneously, bimanual coordination is involved. Additional levels of organization are required depending on whether the person will drink from the glass, give it to someone else, or simply put it on a table.


...
Wikipedia

...