In mathematics, coorbit theory was developed by Hans Georg Feichtinger and Karlheinz Gröchenig around 1990. It provides theory for atomic decomposition of a range of Banach spaces of distributions. Among others the well established wavelet transform and the short-time Fourier transform are covered by the theory.
The starting point is a square integrable representation of a locally compact group on a Hilbert space , with which one can define a transform of a function with respect to by . Many important transforms are special cases of the transform, e.g. the short-time Fourier transform and the wavelet transform for the Heisenberg group and the affine group respectively. Representation theory yields the reproducing formula . By discretization of this continuous convolution integral it can be shown that by sufficiently dense sampling in phase space the corresponding functions will span a frame for the Hilbert space.