Cooperative diversity is a cooperative multiple antenna technique for improving or maximising total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution. That is, cooperative diversity decodes the information from the combination of two signals. Hence, it can be seen that cooperative diversity is an antenna diversity that uses distributed antennas belonging to each node in a wireless network. Note that user cooperation is another definition of cooperative diversity. User cooperation considers an additional fact that each user relays the other user's signal while cooperative diversity can be also achieved by multi-hop relay networking systems.
The cooperative diversity technique is a kind of multi-user MIMO technique.
The simplest cooperative relaying network consists of three nodes, namely source, destination, and a third node supporting the direct communication between source and destination denoted as relay. If the direct transmission of a message from source to destination is not (fully) successful, the overheard information from the source is forwarded by the relay to reach the destination via a different path. Since the two communications took a different path and take place one after another, this example implements the concept of space diversity and time diversity.
The relaying strategies can be further distinguished by the amplify-and-forward, decode-and-forward, and compress-and-forward strategies:
Serial relay transmission is used for long distance communication and range-extension in shadowy regions. It provides power gain. In this topology signals propagate from one relay to another relay and the channels of neighboring hop are orthogonal to avoid any interference.
Parallel relay transmission may be used where serial relay transmission suffers from multi-path fading. For outdoors and non-line-of-sight propagation, signal wavelength may be large and installation of multiple antennas are not possible. To increase the robustness against multi-path fading, parallel relay transmission can be used. In this topology, signals propagate through multiple relay paths in the same hop and the destination combines the signals received with the help of various combining schemes. It provides power gain and diversity gain simultaneously.