In computing science, the controlled NOT gate (also C-NOT or CNOT) is a quantum gate that is an essential component in the construction of a quantum computer. It can be used to entangle and disentangle EPR states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The CNOT gate is the "quantization" of a classical gate.
The CNOT gate operates on a quantum register consisting of 2 qubits. The CNOT gate flips the second qubit (the target qubit) if and only if the first qubit (the control qubit) is .
If one allows only as input values for both qubits, the TARGET output of the CNOT gate corresponds to the result of a classical XOR gate. Fixing CONTROL as , the TARGET output of the CNOT gate yields the result of a classical NOT gate.