A control system manages, commands, directs or regulates the behaviour of other devices or systems. It can range from a home heating controller using a thermostat controlling a domestic boiler to large Industrial control systems which are used for controlling processes or machines.
In the most common form, the feedback control system it is desired to control a process, called the plant, so its output follows a control signal, which may be a fixed or changing value. The control system compares the output of the plant to the control signal, and applies the difference as an error signal to bring the output of the plant closer to the control signal.
The term "control system" may be applied to the essentially manual controls that allow an operator, for example, to close and open a hydraulic press, perhaps including logic so that it cannot be moved unless safety guards are in place.
An automatic sequential control system may trigger a series of mechanical actuators in the correct sequence to perform a task. For example, various electric and pneumatic transducers may fold and glue a cardboard box, fill it with product and then seal it in an automatic packaging machine. Programmable logic controllers are used in many cases such as this, but several alternative technologies exist.
In the case of linear feedback systems, a control loop, including sensors, control algorithms and actuators, is arranged in such a fashion as to try to regulate a variable at a setpoint or reference value. An example of this may increase the fuel supply to a furnace when a measured temperature drops. PID controllers are common and effective in cases such as this. Control systems that include some sensing of the results they are trying to achieve are making use of feedback and so can, to some extent, adapt to varying circumstances. Open-loop control systems do not make use of feedback, and run only in pre-arranged ways.