*** Welcome to piglix ***

Contrast detection autofocus


An autofocus (or AF) optical system uses a sensor, a control system and a motor to focus on an or manually selected point or area. An electronic rangefinder has a display instead of the motor; the adjustment of the optical system has to be done manually until indication. Autofocus methods are distinguished by their type as being either active, passive or hybrid variants.

Autofocus systems rely on one or more sensors to determine correct focus. Some AF systems rely on a single sensor, while others use an array of sensors. Most modern SLR cameras use through-the-lens optical AF sensors, with a separate sensor array providing light metering, although the latter can be programmed to prioritize its metering to the same area as one or more of the AF sensors.

Through-the-lens optical autofocusing is now often speedier and more precise than can be achieved manually with an ordinary viewfinder, although more precise manual focus can be achieved with special accessories such as focusing magnifiers. Autofocus accuracy within 1/3 of the depth of field (DOF) at the widest aperture of the lens is common in professional AF SLR cameras.

Most multi-sensor AF cameras allow manual selection of the active sensor, and many offer automatic selection of the sensor using algorithms which attempt to discern the location of the subject. Some AF cameras are able to detect whether the subject is moving towards or away from the camera, including speed and acceleration data, and keep focus on the subject — a function used mainly in sports and other action photography; on Canon cameras this is known as AI servo, while on Nikon cameras it is known as "continuous focus".

The data collected from AF sensors is used to control an electromechanical system that adjusts the focus of the optical system. A variation of autofocus is an electronic rangefinder, a system in which focus data are provided to the operator, but adjustment of the optical system is still performed manually.


...
Wikipedia

...