In topology, a continuous group action on a topological space X is a group action of a topological group G that is continuous: i.e.,
is a continuous map. Together with the group action, X is called a G-space.
If is a continuous group homomorphism of topological groups and if X is a G-space, then H can act on X by restriction: , making X a H-space. Often f is either an inclusion or a quotient map. In particular, any topological space may be thought of a G-space via (and G would act trivially.)