*** Welcome to piglix ***

Continuous dual space


In mathematics, any vector space V has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V together with a naturally induced linear structure.

The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the algebraic dual space. When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.

Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis.

Given any vector space V over a field F, the dual space V is defined as the set of all linear maps φ: VF (linear functionals). Since linear maps are vector space homomorphisms, the dual space is also sometimes denoted by Hom(V, F). The dual space V itself becomes a vector space over F when equipped with an addition and scalar multiplication satisfying:

for all φ and ψV, xV, and aF. Elements of the algebraic dual space V are sometimes called covectors or one-forms.


...
Wikipedia

...