*** Welcome to piglix ***

Constant elasticity of substitution


Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions.

Specifically, it arises in a particular type of aggregator function which combines two or more types of consumption goods, or two or more types of production inputs into an aggregate quantity. This aggregator function exhibits constant elasticity of substitution.

The CES production function is a neoclassical production function that displays constant elasticity of substitution. In other words, the production technology has a constant percentage change in factor (e.g. labour and capital) proportions due to a percentage change in marginal rate of technical substitution. The two factor (capital, labor) CES production function introduced by Solow, and later made popular by Arrow, Chenery, Minhas, and Solow is:

where

As its name suggests, the CES production function exhibits constant elasticity of substitution between capital and labor. Leontief, linear and Cobb–Douglas functions are special cases of the CES production function. That is,

The general form of the CES production function, with n inputs, is:

where

Extending the CES (Solow) form to accommodate multiple factors of production creates some problems, however. There is no completely general way to do this. Uzawa showed the only possible n-factor production functions (n>2) with constant partial elasticities of substitution require either that all elasticities between pairs of factors be identical, or if any differ, these all must equal each other and all remaining elasticities must be unity. This is true for any production function. This means the use of the CES functional form for more than 2 factors will generally mean that there is not constant elasticity of substitution among all factors.


...
Wikipedia

...