Connectionism is a set of approaches in the fields of artificial intelligence, cognitive psychology, cognitive science, neuroscience, and philosophy of mind, that models mental or behavioral phenomena as the emergent processes of interconnected networks of simple units. The term was introduced by Donald Hebb in the 1940s. There are many forms of connectionism, but the most common forms use neural network models.
The central connectionist principle is that mental phenomena can be described by interconnected networks of simple and often uniform units. The form of the connections and the units can vary from model to model. For example, units in the network could represent neurons and the connections could represent synapses like in the brain of a human being.
In most connectionist models, networks change over time. A closely related and very common aspect of connectionist models is activation. At any time, a unit in the network has an activation, which is a numerical value intended to represent some aspect of the unit. For example, if the units in the model are neurons, the activation could represent the probability that the neuron would generate an action potential spike. Activation typically spreads to all the other units connected to it. Spreading activation is always a feature of neural network models, and it is very common in connectionist models used by cognitive psychologists.
Neural networks are by far the most commonly used connectionist model today. Though there are a large variety of neural network models, they almost always follow two basic principles regarding the mind:
Most of the variety among neural network models comes from:
Connectionists are in agreement that recurrent neural networks (directed networks wherein connections of the network can form a directed cycle) are a better model of the brain than feedforward neural networks (directed networks with no cycles, called DAG). Many recurrent connectionist models also incorporate dynamical systems theory. Many researchers, such as the connectionist Paul Smolensky, have argued that connectionist models will evolve toward fully continuous, high-dimensional, non-linear, dynamic systems approaches.