*** Welcome to piglix ***

Conformal structure


In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

In two a real dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what's called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry.

A conformal manifold is a differentiable manifold equipped with an equivalence class of (pseudo-)Riemannian metric tensors, in which two metrics g and h are equivalent if and only if

where λ is a real-valued smooth function defined on the manifold. An equivalence class of such metrics is known as a conformal metric or conformal class. Thus, a conformal metric may be regarded as a metric that is only defined "up to scale". Often conformal metrics are treated by selecting a metric in the conformal class, and applying only "conformally invariant" constructions to the chosen metric.

A conformal metric is conformally flat if there is a metric representing it that is flat, in the usual sense that the Riemann curvature tensor vanishes. It may only be possible to find a metric in the conformal class that is flat in an open neighborhood of each point. When it is necessary to distinguish these cases, the latter is called locally conformally flat, although often in the literature no distinction is maintained. The n-sphere is a locally conformally flat manifold that is not globally conformally flat in this sense, whereas a Euclidean space, a torus, or any conformal manifold that is covered by an open subset of Euclidean space is (globally) conformally flat in this sense. A locally conformally flat manifold is locally conformal to a Möbius geometry, meaning that there exists an angle preserving local diffeomorphism from the manifold into a Möbius geometry. In two dimensions, every conformal metric is locally conformally flat. In dimension n > 3 a conformal metric is locally conformally flat if and only if its Weyl tensor vanishes; in dimension n = 3, if and only if the Cotton tensor vanishes.


...
Wikipedia

...