Condition monitoring (or, colloquially, CM) is the process of monitoring a parameter of condition in machinery (vibration, temperature etc.), in order to identify a significant change which is indicative of a developing fault. It is a major component of predictive maintenance. The use of condition monitoring allows maintenance to be scheduled, or other actions to be taken to prevent failure and avoid its consequences. Condition monitoring has a unique benefit in that conditions that would shorten normal lifespan can be addressed before they develop into a major failure. Condition monitoring techniques are normally used on rotating equipment and other machinery (pumps, electric motors, internal combustion engines, presses), while periodic inspection using non-destructive testing techniques and fit for service (FFS) evaluation are used for stationary plant equipment such as steam boilers, piping and heat exchangers.
The following list includes the main condition monitoring techniques applied in the industrial and transportation sectors:
Most CM technologies are being slowly standardized by ASTM and ISO.
The most commonly used method for rotating machines is called a vibration analysis. Measurements can be taken on machine bearing casings with accelerometers (seismic or piezo-electric transducers) to measure the casing vibrations, and on the vast majority of critical machines, with eddy-current transducers that directly observe the rotating shafts to measure the radial (and axial) displacement of the shaft. The level of vibration can be compared with historical baseline values such as former start ups and shutdowns, and in some cases established standards such as load changes, to assess the severity.
Interpreting the vibration signal obtained is an elaborate procedure that requires specialized training and experience. It is simplified by the use of state-of-the-art technologies that provide the vast majority of data analysis automatically and provide information instead of raw data. One commonly employed technique is to examine the individual frequencies present in the signal. These frequencies correspond to certain mechanical components (for example, the various pieces that make up a rolling-element bearing) or certain malfunctions (such as shaft unbalance or misalignment). By examining these frequencies and their harmonics, the CM specialist can often identify the location and type of problem, and sometimes the root cause as well. For example, high vibration at the frequency corresponding to the speed of rotation is most often due to residual imbalance and is corrected by balancing the machine. A degrading rolling-element bearing, on the other hand, will usually exhibit vibration signals at specific frequencies increasing in intensity as it wears. Special analysis instruments can detect this wear weeks or even months before failure, giving ample warning to schedule replacement before a failure which could cause a much longer down-time. Beside all sensors and data analysis it is important to keep in mind that more than 80% of all complex mechanical equipment fail accidentally and without any relation to their life-cycle period.