*** Welcome to piglix ***

Concyclic points


In geometry, a set of points are said to be concyclic (or cocyclic) if they lie on a common circle. All concyclic points are the same distance from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, but four or more such points in the plane are not necessarily concyclic.

In general the centre O of a circle on which points P and Q lie must be such that OP and OQ are equal distances. Therefore O must lie on the perpendicular bisector of the line segment PQ. For n distinct points there are n(n − 1)/2 bisectors, and the concyclic condition is that they all meet in a single point, the centre O.

The vertices of every triangle fall on a circle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) The circle containing the vertices of a triangle is called the circumscribed circle of the triangle. Several other sets of points defined from a triangle are also concyclic, with different circles; see nine-point circle and Lester's theorem.

The radius of the circle on which lie a set of points is, by definition, the radius of the circumcircle of any triangle with vertices at any three of those points. If the pairwise distances among three of the points are a, b, and c, then the circle's radius is

The equation of the circumcircle of a triangle, and expressions for the radius and the coordinates of the circle's center, in terms of the Cartesian coordinates of the vertices are given here and here.

A quadrilateral ABCD with concyclic vertices is called a cyclic quadrilateral; this happens if and only if (the inscribed angle theorem) which is true if and only if the opposite angles inside the quadrilateral are supplementary. A cyclic quadrilateral with successive sides a, b, c, d and semiperimeter s = (a+b+c+d)/2 has its circumradius given by


...
Wikipedia

...