*** Welcome to piglix ***

Concentrating solar thermal


Concentrated solar power (also called concentrating solar power, concentrated solar thermal, and CSP) systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight, or solar thermal energy, onto a small area. Electricity is generated when the concentrated light is converted to heat, which drives a heat engine (usually a steam turbine) connected to an electrical power generator or powers a thermochemical reaction (experimental as of 2013).

CSP had a world's total installed capacity of 4,815 MW in 2016, up from 354 MW in 2005. As of 2017, Spain accounted for almost half of the world's capacity, at 2,300 MW, making this country the world leader in CSP. United States follows with 1,740 MW. Interest is also notable in North Africa and the Middle East, as well as India and China. The global market has been dominated by parabolic-trough plants, which accounted for 90% of CSP plants at one point. The largest CSP projects in the world are the Ivanpah Solar Power Facility (392 MW) in the United States (which uses solar power tower technology), the Mojave Solar Project (354 MW) in the United States (which uses parabolic troughs).

In most cases, CSP technologies currently cannot compete on price with photovoltaics solar panels, which have experienced huge growth in recent years due to falling prices and much smaller operating costs. CSP generally needs large amount of direct solar radiation, and its energy generation falls dramatically with cloud cover. This is in contrast with photovoltaics, which can produce electricity also from diffuse radiation. However, an advantage of CSP systems over PV is that certain CSP technologies can store energy in the form of molten salts, which allows these plants to continue to generate electricity after sunset and make them partially dispatchable. This is particularly valuable in places where there is already a high penetration of PV, such as California.


...
Wikipedia

...