Computer Go is the field of artificial intelligence (AI) dedicated to creating a computer program that plays the traditional board game Go. The game of Go has been a fertile subject of artificial intelligence research for decades, culminating in 2016 with the best computer program beating one of the top human players.
Go is a complex board game that requires intuition, creative and strategic thinking. It has long been considered a difficult challenge in the field of artificial intelligence (AI) and is considerably more difficult to solve than chess. Many in the field of artificial intelligence consider Go to require more elements that mimic human thought than chess. Mathematician I. J. Good wrote in 1965:
Go on a computer? – In order to programme a computer to play a reasonable game of Go, rather than merely a legal game – it is necessary to formalise the principles of good strategy, or to design a learning programme. The principles are more qualitative and mysterious than in chess, and depend more on judgment. So I think it will be even more difficult to programme a computer to play a reasonable game of Go than of chess.
Prior to 2015, the best Go programs only managed to reach amateur dan level. On the small 9×9 board, the computer fared better, and some programs managed to win a fraction of their 9×9 games against professional players. Prior to AlphaGo, some researchers had claimed that computers would never defeat top humans at Go.
The first Go program was written by Albert Lindsey Zobrist in 1968 as part of his thesis on pattern recognition. It introduced an influence function to estimate territory and Zobrist hashing to detect ko.