Computational aeroacoustics is a branch of aeroacoustics that aims to analyze the generation of noise by turbulent flows through numerical methods.
The origin of Computational Aeroacoustics can only very likely be dated back to the middle of the 1980s, with a publication of Hardin and Lamkin who claimed, that
"[...] the field of computational fluid mechanics has been advancing rapidly in the past few years and now offers the hope that "computational aeroacoustics," where noise is computed directly from a first principles determination of continuous velocity and vorticity fields, might be possible, [...]"
Later in a publication 1986 the same authors introduced the abbreviation CAA. The term was initially used for a low Mach number approach (Expansion of the acoustic perturbation field about an incompressible flow) as it is described under EIF. Later in the beginning 1990s the growing CAA community picked up the term and extensively used it for any kind of numerical method describing the noise radiation from an aeroacoustic source or the propagation of sound waves in an inhomogeneous flow field. Such numerical methods can be far field integration methods (e.g. FW-H) as well as direct numerical methods optimized for the solutions (e.g.) of a mathematical model describing the aerodynamic noise generation and/or propagation. With the rapid development of the computational resources this field has undergone spectacular progress during the last three decades.
The compressible Navier-Stokes equation describes both the flow field, and the aerodynamically generated acoustic field. Thus both may be solved for directly. This requires very high numerical resolution due to the large differences in the length scale present between the acoustic variables and the flow variables. It is computationally very demanding and unsuitable for any commercial use.
In this approach the computational domain is split into different regions, such that the governing acoustic or flow field can be solved with different equations and numerical techniques. This would involve using two different numerical solvers, first a dedicated Computational fluid dynamics (CFD) tool and secondly an acoustic solver. The flow field is then used to calculate the acoustical sources. Both steady state (RANS, SNGR (Stochastic Noise Generation and Radiation), ...) and transient (DNS, LES, DES, URANS, ...) fluid field solutions can be used. These acoustical sources are provided to the second solver which calculates the acoustical propagation. Acoustic propagation can be calculated using one of the following methods :