*** Welcome to piglix ***

Computable real


In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers or the computable reals or recursive reals.

Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes.

In the following, Marvin Minsky defines the numbers to be computed in a manner similar to those defined by Alan Turing in 1936; i.e., as "sequences of digits interpreted as decimal fractions" between 0 and 1:

The key notions in the definition are (1) that some n is specified at the start, (2) for any n the computation only takes a finite number of steps, after which the machine produces the desired output and terminates.

An alternate form of (2) – the machine successively prints all n of the digits on its tape, halting after printing the nth – emphasizes Minsky's observation: (3) That by use of a Turing machine, a finite definition – in the form of the machine's table – is being used to define what is a potentially-infinite string of decimal digits.

This is however not the modern definition which only requires the result be accurate to within any given accuracy. The informal definition above is subject to a rounding problem called the table-maker's dilemma whereas the modern definition is not.

A real number a is computable if it can be approximated by some computable function in the following manner: given any positive integer n, the function produces an integer f(n) such that:


...
Wikipedia

...