A compression driver is a small specialized diaphragm loudspeaker which generates the sound in a horn loudspeaker. It is attached to an acoustic horn, a widening duct which serves to radiate the sound efficiently into the air. It works in a "compression" mode; the area of the loudspeaker diaphragm is significantly larger than the throat aperture of the horn so that it provides high sound pressures. Horn-loaded compression drivers can achieve very high efficiencies, around 10 times the efficiency of direct-radiating cone loudspeakers. They are used as midrange and tweeter drivers in high power sound reinforcement loudspeakers, and in reflex or folded-horn loudspeakers in megaphones and public address systems.
In 1924 Hanna, C. R. and Slepian, J. were the first to discuss the benefits of using a large radiating diaphragm with a horn of smaller throat area as a means of increasing the efficiency of horn loudspeaker drivers. They correctly surmised that this arrangement results in a significant increase in the radiation resistance (and therefore increased efficiency), because the loading mismatch between the vibrating transducer surface and air is largely corrected, thus allowing for much better energy transfer. In the Hanna and Slepian proposal the compression cavity is directly connected to the throat of the horn.
The next innovation came from E.C. Wente and A.L Thuras in "A High-Efficiency Receiver for a Horn-Type Loudspeaker of Large Power capacity" in the Bell System Technical Journal, 1928. They devised a plug placed in front of a radiating diaphragm to control the transition from compression cavity to horn throat. They found that the bandwidth of the transducer could be extended to higher frequencies using their phase plug. They also outlined criterion for the design of the channels in the plug and suggested a path-length based design approach to maximize the bandwidth. Significantly, their plug moves the coupling point between the cavity and horn away from the axis of rotation. This change significantly improves the transducer response as the effect of the acoustical resonances in compression cavity is reduced. The paper described the first generation compression driver with a field coil magnet and phase plug, It used aluminum diaphragm with an edge wound aluminum ribbon voice coil.