*** Welcome to piglix ***

Component (graph theory)


In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph. For example, the graph shown in the illustration has three connected components. A vertex with no incident edges is itself a connected component. A graph that is itself connected has exactly one connected component, consisting of the whole graph.

An alternative way to define connected components involves the equivalence classes of an equivalence relation that is defined on the vertices of the graph. In an undirected graph, a vertex v is reachable from a vertex u if there is a path from u to v. In this definition, a single vertex is counted as a path of length zero, and the same vertex may occur more than once within a path. Reachability is an equivalence relation, since:

The connected components are then the induced subgraphs formed by the equivalence classes of this relation.

The number of connected components is an important topological invariant of a graph. In topological graph theory it can be interpreted as the zeroth Betti number of the graph. In algebraic graph theory it equals the multiplicity of 0 as an eigenvalue of the Laplacian matrix of the graph. It is also the index of the first nonzero coefficient of the chromatic polynomial of a graph. Numbers of connected components play a key role in the Tutte theorem characterizing graphs that have perfect matchings, and in the definition of graph toughness.


...
Wikipedia

...