*** Welcome to piglix ***

Complexity economics


Complexity economics is the application of complexity science to the problems of economics. It sees the economy not as a system in equilibrium, but as one in motion, perpetually constructing itself anew. It uses computational rather than mathematical analysis to explore how economic structure is formed and reformed, in continuous interaction with the adaptive behavior of the 'agents' in the economy

The "nearly archetypal example" is an artificial stock market model created by the Santa Fe Institute in 1989. The model shows two different outcomes, one where "agents do not search much for predictors and there is convergence on a homogeneous rational expectations outcome" and another where "all kinds of technical trading strategies appearing and remaining and periods of bubbles and crashes occurring".

Another area has studied the prisoner's dilemma, such as in a network where agents play amongst their nearest neighbors or a network where the agents can make mistakes from time to time and "evolve strategies". In these models, the results show a system which displays "a pattern of constantly changing distributions of the strategies".

More generally, complexity economics models are often used to study how non-intuitive results at the macro-level of a system can emerge from simple interactions at the micro level. This avoids assumptions of the representative agent method, which attributes outcomes in collective systems as the simple sum of the rational actions of the individuals.

Harvard economist Ricardo Hausmann and MIT physicist Cesar A. Hidalgo introduced a spectral method to measure the complexity of a country's economy by inferring it from the structure of the network connecting countries to the products that they export. The measure combines information of a country's diversity, which is positively correlated with a country's productive knowledge, with measures of a product ubiquity (number of countries that produce or export the product). This concept, known as the "Product Space", has been further developed by MIT's Observatory of Economic Complexity, and in The Atlas of Economic Complexity in 2011.

The Economic Complexity Index (ECI) introduced by Hausmann and Hidalgo is highly predictive of future GDP per capita growth. In Hausmann, Hidalgo et al. show that the List of countries by future GDP (based on ECI) estimates ability of the ECI to predict future GDP per capita growth is between 5 times and 20 times larger than the World Bank's measure of governance, the World Economic Forum's (WEF) Global Competitiveness Index (GCI) and standard measures of human capital, such as years of schooling and cognitive ability.


...
Wikipedia

...