Chelation (pronounced /kiːˈleɪʃən/) is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central atom. Usually these ligands are organic compounds, and are called chelants, chelators, chelating agents, or sequestering agents.
Chelation is useful in applications such as providing nutritional supplements, in chelation therapy to remove toxic metals from the body, as contrast agents in MRI scanning, in manufacturing using homogeneous catalysts, and in fertilizers.
The chelate effect is the enhanced affinity of chelating ligands for a metal ion compared to the affinity of a collection of similar nonchelating (monodentate) ligands for the same metal.
Consider the two equilibria, in aqueous solution, between the copper(II) ion, Cu2+ and ethylenediamine (en) on the one hand and methylamine, MeNH2 on the other.
Cu2+ + en ⇌ [Cu(en)]2+
()
Cu2+ + 2 MeNH2 ⇌ [Cu(MeNH2)2]2+
()
In (1) the bidentate ligand ethylenediamine forms a chelate complex with the copper ion. Chelation results in the formation of a five-membered CuC2N2 ring. In (2) the bidentate ligand is replaced by two monodentate methylamine ligands of approximately the same donor power, meaning that the enthalpy of formation of Cu—N bonds is approximately the same in the two reactions.