*** Welcome to piglix ***

Complex spin structure


In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.

Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry.

In geometry and in field theory, mathematicians ask whether or not a given oriented Riemannian manifold (M,g) admits spinors. One method for dealing with this problem is to require that M has a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second Stiefel–Whitney class w2(M) ∈ H2(M, Z2) of M vanishes. Furthermore, if w2(M) = 0, then the set of the isomorphism classes of spin structures on M is acted upon freely and transitively by H1(M, Z2) . As the manifold M is assumed to be oriented, the first Stiefel–Whitney class w1(M) ∈ H1(M, Z2) of M vanishes too. (The Stiefel–Whitney classes wi(M) ∈ Hi(M, Z2) of a manifold M are defined to be the Stiefel–Whitney classes of its tangent bundle TM.)


...
Wikipedia

...