*** Welcome to piglix ***

Complex configuration


In geometry, H. S. M. Coxeter called a regular polytope a special kind of configuration.

Other configurations in geometry are something different. These polytope configurations may more accurately called incidence matrices, where like elements are collected together in rows and columns. Regular polytopes will have one row and column per k-face element, while other polytopes will have one row and column for each k-face type by their symmetry classes. A polytope with no symmetry will have one row and column for every element, and the matrix will be filled with 0 if the elements are not connected, and 1 if they are connected. Elements of the same k will not be connected and will have a "*" table entry.

Every polytope, and abstract polytope has an Hasse diagram expressing these connectivities, which can be systematically described with an incidence matrix.

A configuration for a regular polytope is represented by a matrix where the diagonal element, Ni, is the number of i-faces in the polytope. The diagonal elements are also called a polytope's f-vector. The nondiagonal (ij) element Nij is the number of j-faces incident with each i-face element, so that NiNij = NjNji.

The principle extends generally to n dimensions, where 0 ≤ j < n.

A regular polygon, {q}, will have a 2x2 matrix, with the first row for vertices, and second row for edges. The order g is 2q.

A general n-gon will have a 2n x 2n matrix, with the first n rows and columns vertices, and the last n rows and columns as edges.

There are three symmetry classifications of a triangle: equilateral, isosceles, and scalene. They all have the same incidence matrix, but symmetry allows vertices and edges to be collected together and counted. These triangles have vertices labeled A,B,C, and edges a,b,c, while vertices and edges that can be mapped onto each other by a symmetry operation are labeled identically.


...
Wikipedia

...