In mathematics, specifically projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points. Dually, a complete quadrilateral is a system of four lines, no three of which pass through the same point, and the six points of intersection of these lines. The complete quadrangle was called a tetrastigm by Lachlan (1893), and the complete quadrilateral was called a tetragram; those terms are occasionally still used.
The six lines of a complete quadrangle meet in pairs to form three additional points called the diagonal points of the quadrangle. Similarly, among the six points of a complete quadrilateral there are three pairs of points that are not already connected by lines; the line segments connecting these pairs are called diagonals. Due to the discovery of the Fano plane, a finite geometry in which the diagonal points of a complete quadrangle are collinear, some authors have augmented the axioms of projective geometry with Fano's axiom that the diagonal points are not collinear, while others have been less restrictive.
As systems of points and lines in which all points belong to the same number of lines and all lines contain the same number of points, the complete quadrangle and the complete quadrilateral both form projective configurations; in the notation of projective configurations, the complete quadrangle is written as (4362) and the complete quadrilateral is written (6243), where the numbers in this notation refer to the numbers of points, lines per point, lines, and points per line of the configuration. The projective dual of a complete quadrangle is a complete quadrilateral, and vice versa. For any two complete quadrangles, or any two complete quadrilaterals, there is a unique projective transformation taking one of the two configurations into the other.