*** Welcome to piglix ***

Color charge


Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD).

The "color charge" of quarks and gluons is completely unrelated to visual perception of color. The term color became popular simply because the charge responsible for the strong force between particles can be analogized to the three additive primary colors of human vision: red, green, and blue. Another color scheme is "red, yellow, and blue", using paint as the perceptible analogy.

Particles have corresponding antiparticles. A particle with red, green, or blue charge has a corresponding antiparticle in which the color charge must be the anticolor of red, green, and blue, respectively, for the color charge to be conserved in particle-antiparticle creation and annihilation. Particle physicists call these antired, antigreen, and antiblue. All three colors mixed together, or any one of these colors and its complement (or negative), is "colorless" or "white" and has a net color charge of zero. Free particles have a color charge of zero: baryons are composed of three quarks, but the individual quarks can have red, green, or blue charges, or negatives; mesons are made from a quark and antiquark, the quark can be any color, and the antiquark will have the negative of that color. This color charge differs from electromagnetic charges since electromagnetic charges have only one kind of value. Positive and negative electrical charges are the same kind of charge as they only differ by the sign.

Shortly after the existence of quarks was first proposed in 1964, Oscar W. Greenberg introduced the notion of color charge to explain how quarks could coexist inside some hadrons in otherwise identical quantum states without violating the Pauli exclusion principle. The theory of quantum chromodynamics has been under development since the 1970s and constitutes an important component of the Standard Model of particle physics.


...
Wikipedia

...