*** Welcome to piglix ***

Collinear points


In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a line is typically a primitive (undefined) object type, so such visualizations will not necessarily be appropriate. A model for the geometry offers an interpretation of how the points, lines and other object types relate to one another and a notion such as collinearity must be interpreted within the context of that model. For instance, in spherical geometry, where lines are represented in the standard model by great circles of a sphere, sets of collinear points lie on the same great circle. Such points do not lie on a "straight line" in the Euclidean sense, and are not thought of as being in a row.

A mapping of a geometry to itself which sends lines to lines is called a collineation; it preserves the collinearity property. The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.

In any triangle the following sets of points are collinear:

In coordinate geometry, in n-dimensional space, a set of three or more distinct points are collinear if and only if, the matrix of the coordinates of these vectors is of rank 1 or less. For example, given three points X = (x1, x2, ... , xn), Y = (y1, y2, ... , yn), and Z = (z1, z2, ... , zn), if the matrix


...
Wikipedia

...