*** Welcome to piglix ***

Collective animal behavior


Collective animal behavior describes the coordinated behavior of large groups of similar animals as well as emergent properties of these groups. This can include the costs and benefits of group membership, the transfer of information across the group, the group decision-making process, and group locomotion and synchronization. Studying the principles of collective animal behavior has relevance to human engineering problems through the philosophy of biomimetics. For instance, determining the rules by which an individual animal navigates relative to its neighbors in a group can lead to advances in the deployment and control of groups of swimming or flying micro-robots such as UAVs (Unmanned Aerial Vehicles).

Examples of collective animal behavior include:

Many functions of animal aggregations have been proposed. These proposed functions may be grouped into the four following categories: social and genetic, anti-predator, enhanced foraging, and increased locomotion efficiency.

Support for the social and genetic function of aggregations, especially those formed by fish, can be seen in several aspects of their behavior. For instance, experiments have shown that individual fish removed from a school will have a higher respiratory rate than those found in the school. This effect has been partly attributed to stress, although hydrodynamic factors were considered more important in this particular study. The calming effect of being with conspecifics may thus provide a social motivation for remaining in an aggregation. Herring, for instance, will become very agitated if they are isolated from conspecifics. Fish schools have also been proposed to serve a reproductive function since they provide increased access to potential mates.

Several anti-predator functions of animal aggregations have been proposed. One potential method by which fish schools or bird flocks may thwart predators is the ‘predator confusion effect’ proposed and demonstrated by Milinksi and Heller (1978). This theory is based on the idea that it becomes difficult for predators to pick out individual prey from groups because the many moving targets create a sensory overload of the predator's visual channel. Milinski and Heller's findings have been corroborated both in experiment and computer simulations.

A second potential anti-predator effect of animal aggregations is the "many eyes" hypothesis. This theory states that as the size of the group increases, the task of scanning the environment for predators can be spread out over many individuals. Not only does this mass collaboration presumably provide a higher level of vigilance, it could also allow more time for individual feeding.


...
Wikipedia

...