*** Welcome to piglix ***

Coherent topology


In topology, a coherent topology is a topology that is uniquely determined by a family of subspaces. Loosely speaking, a topological space is coherent with a family of subspaces if it is a topological union of those subspaces. It is also sometimes called the weak topology generated by the family of subspaces, a notion which is quite different from the notion of a weak topology generated by a set of maps.

Let X be a topological space and let C = {Cα : α ∈ A} be a family of subspaces of X (typically C will be a cover of X). Then X is said to be coherent with C (or determined by C) if X has the final topology coinduced by the inclusion maps

By definition, this is the finest topology on (the underlying set of) X for which the inclusion maps are continuous.

Equivalently, X is coherent with C if either of the following two equivalent conditions holds:

Given a topological space X and any family of subspaces C there is unique topology on (the underlying set of) X which is coherent with C. This topology will, in general, be finer than the given topology on X.

Let be a family of (not necessarily disjoint) topological spaces such that the induced topologies agree on each intersection XαXβ. Assume further that XαXβ is closed in Xα for each α,β. Then the topological union X is the set-theoretic union


...
Wikipedia

...