*** Welcome to piglix ***

Coherent anti-Stokes Raman spectroscopy


Coherent anti-Stokes Raman spectroscopy, also called Coherent anti-Stokes Raman scattering spectroscopy (CARS), is a form of spectroscopy used primarily in chemistry, physics and related fields. It is sensitive to the same vibrational signatures of molecules as seen in Raman spectroscopy, typically the nuclear vibrations of chemical bonds. Unlike Raman spectroscopy, CARS employs multiple photons to address the molecular vibrations, and produces a coherent signal. As a result, CARS is orders of magnitude stronger than spontaneous Raman emission. CARS is a third-order nonlinear optical process involving three laser beams: a pump beam of frequency ωp, a Stokes beam of frequency ωS and a probe beam at frequency ωpr. These beams interact with the sample and generate a coherent optical signal at the anti-Stokes frequency (ωprpS). The latter is resonantly enhanced when the frequency difference between the pump and the Stokes beams (ωpS) coincides with the frequency of a Raman resonance, which is the basis of the technique's intrinsic vibrational contrast mechanism.

Coherent Stokes Raman spectroscopy (CSRS pronounced as "scissors") is closely related to Raman spectroscopy and lasing processes. It is very similar to CARS except it uses an anti-Stokes frequency stimulation beam and a Stokes frequency beam is observed (the opposite of CARS).

In 1965, a paper was published by two researchers of the Scientific Laboratory at the Ford Motor Company, P. D. Maker and R. W. Terhune, in which the CARS phenomenon was reported for the first time. Maker and Terhune used a pulsed ruby laser to investigate the third order response of several materials. They first passed the ruby beam of frequency ω through a Raman shifter to create a second beam at ω-ωv, and then directed the two beams simultaneously onto the sample. When the pulses from both beams overlapped in space and time, the Ford researchers observed a signal at ω+ωv, which is the blue-shifted CARS signal. They also demonstrated that the signal increases significantly when the difference frequency ωv between the incident beams matches a Raman frequency of the sample. Maker and Terhune called their technique simply 'three wave mixing experiments'. The name coherent anti-Stokes Raman spectroscopy was assigned almost ten years later, by Begley et al. at Stanford University in 1974. Since then, this vibrationally sensitive nonlinear optical technique has been commonly known as CARS.


...
Wikipedia

...