Names | |
---|---|
IUPAC name
2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaenyl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione
|
|
Identifiers | |
303-98-0 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:46245 |
ChEMBL | ChEMBL454801 |
ChemSpider | 4445197 |
ECHA InfoCard | 100.005.590 |
PubChem | 5281915 |
UNII | EJ27X76M46 |
|
|
|
|
Properties | |
C59H90O4 | |
Molar mass | 863.37 g·mol−1 |
Appearance | yellow or orange solid |
Melting point | 48–52 °C (118–126 °F; 321–325 K) |
insoluble | |
Pharmacology | |
C01EB09 (WHO) | |
Related compounds | |
Related quinones
|
1,4-Benzoquinone Plastoquinone Ubiquinol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Coenzyme Q10, also known as ubiquinone, ubidecarenone, coenzyme Q, and abbreviated at times to CoQ10 /ˌkoʊ ˌkjuː ˈtɛn/, CoQ, or Q10 is a coenzyme that is ubiquitous in the bodies of most animals. It is a 1,4-benzoquinone, where Q refers to the quinone chemical group and 10 refers to the number of isoprenyl chemical subunits in its tail.
This fat-soluble substance, which resembles a vitamin, is present in most eukaryotic cells, primarily in the . It is a component of the electron transport chain and participates in aerobic cellular respiration, which generates energy in the form of ATP. Ninety-five percent of the human body's energy is generated this way. Therefore, those organs with the highest energy requirements—such as the heart, liver, and kidney—have the highest CoQ10 concentrations.
There are three redox states of CoQ10: fully oxidized (ubiquinone), semiquinone (ubisemiquinone), and fully reduced (ubiquinol). The capacity of this molecule to act as a two-electron carrier (moving between the quinone and quinol form) and a one-electron carrier (moving between the semiquinone and one of these other forms) is central to its role in the electron transport chain due to the iron–sulfur clusters that can only accept one electron at a time, and as a free radical-scavenging antioxidant.