In statistics, in the analysis of two-way randomized block designs where the response variable can take only two possible outcomes (coded as 0 and 1), Cochran's Q test is a non-parametric statistical test to verify whether k treatments have identical effects. It is named for William Gemmell Cochran. Cochran's Q test should not be confused with Cochran's C test, which is a variance outlier test. Put in less technical terms, requires that there only be a binary response (success/failure or 1/0) and that there be 2 or more matched groups (groups of the same size). The test assesses whether the proportion of successes is the same between groups. Often used to assess if different observers of the same phenomenon have consistent results amongst themselves (interobserver variability).
Cochran's Q test assumes that there are k > 2 experimental treatments and that the observations are arranged in b blocks; that is,
Cochran's Q test is
The Cochran's Q test statistic is
where
For significance level α, the critical region is
where Χ21 − α,k − 1 is the (1 − α)-quantile of the chi-squared distribution with k − 1 degrees of freedom. The null hypothesis is rejected if the test statistic is in the critical region. If the Cochran test rejects the null hypothesis of equally effective treatments, pairwise multiple comparisons can be made by applying Cochran's Q test on the two treatments of interest..
Cochran's Q test is based on the following assumptions:
This article incorporates public domain material from the National Institute of Standards and Technology website http://www.nist.gov.