*** Welcome to piglix ***

Clock drift


Clock drift refers to several related phenomena where a clock does not run at exactly the same rate as a reference clock. That is, after some time the clock "drifts apart" or gradually desynchronizes from the other clock. This phenomenon is used, for instance, in computers to build random number generators. On the negative side, clock drift can be exploited by timing attacks.

Everyday clocks such as wristwatches have finite precision. Eventually they require correction to remain accurate. The rate of drift depends on the clock's quality, sometimes the stability of the power source, the ambient temperature, and other subtle environmental variables. Thus the same clock can have different drift rates at different occasions.

Mechanical watches drift much more than quartz ones, but they are designed to drift ahead rather than behind, so that the watch gains time, making it easier to set the time to the second with the hack (stop mechanism) function.

More advanced clocks and old mechanical clocks often have some kind of speed trimmer where one can adjust the speed of the clock and thus correct for clock drift. For instance, in pendulum clocks the clock drift can be manipulated by slightly changing the length of the pendulum.

A quartz oscillator is less subject to drift due to manufacturing variances than the pendulum in a mechanical clock. Hence most everyday quartz clocks do not have an adjustable drift correction.

Atomic clocks are very precise and have nearly no clock drift. Even the Earth's rotation rate has more drift and variation in drift than an atomic clock due to tidal acceleration and other effects. The principle behind the atomic clock has enabled scientists to re-define the SI unit second in terms of exactly 9 192 631 770 oscillations of the caesium atom. The precision of these oscillations allows atomic clocks to drift roughly only one second in a hundred million years; currently, the most accurate of which loses one second every 15 billion years. The International Atomic Time (TAI) time standard and its derivatives (such as the Coordinated Universal Time (UTC)) are based on weighted averages of atomic clocks worldwide.


...
Wikipedia

...