Climate resilience can be generally defined as the capacity for a socio-ecological system to: (1) absorb stresses and maintain function in the face of external stresses imposed upon it by climate change and (2) adapt, reorganize, and evolve into more desirable configurations that improve the sustainability of the system, leaving it better prepared for future climate change impacts.
With the rising awareness of climate change impacts by both national and international bodies, building climate resilience has become a major goal for these institutions. The key focus of climate resilience efforts is to address the vulnerability that communities, states, and countries currently have with regards to the environmental consequences of climate change. Currently, climate resilience efforts encompass social, economic, technological, and political strategies that are being implemented at all scales of society. From local community action to global treaties, addressing climate resilience is becoming a priority, although it could be argued that a significant amount of the theory has yet to be translated into practice. Despite this, there is a robust and ever-growing movement fueled by local and national bodies alike geared towards building and improving climate resilience.
In actuality, there is still a great deal of abstract discussion and debate regarding a number of subtle nuances associated with the precise definition of the climate resilience perspective, such as its relation to climate change adaptation, the extent to which it should encompass actor-based versus systems-based approaches to improving stability, and its relationship with the balance of nature theory or homeostatic equilibrium view of ecological systems. Currently, the majority of work regarding climate resilience has been centered around examining the capacity for social-ecological systems to sustain shocks and maintain the integrity of functional relationships in the face of external forces. However, there is a growing consensus in academic literature which argues that greater attention needs to be focused on investigating the other critical aspect of climate resilience, which is the capacity for social-ecological systems to renew and develop, and to utilize disturbances as opportunities for innovation and evolution of new pathways that improve the system’s ability to adapt to macroscopic changes.
The fact that climate resilience encompasses a dual function, to absorb shock as well as to self-renew, is the primary means by which it can be differentiated from the concept of climate adaptation. In general, adaptation is viewed as a group of processes and actions that help a system absorb changes that have already occurred, or may be predicted to occur in the future. For the specific case of environmental change and climate adaptation, it is argued by many that adaptation should be defined strictly as encompassing only active decision-making processes and actions - in other words, deliberate changes made in response to climate change. Of course, this characterization is highly debatable: after all, adaptation can also be used to describe natural, involuntary processes by which organisms, populations, ecosystems and perhaps even social-ecological systems evolve after the application of certain external stresses. However, for the purposes of differentiating climate adaptation and climate resilience from a policymaking standpoint, we can contrast the active, actor-centric notion of adaptation with resilience, which would be a more systems-based approach to building social-ecological networks that are inherently capable of not only absorbing change, but utilizing those changes to develop into more efficient configurations.