*** Welcome to piglix ***

Clausius theorem


The Clausius theorem (1855) states that for a system exchanging heat with external reservoirs and undergoing a cyclic process (i.e. a process which ultimately returns a system to its original state):

where δ is the amount of heat absorbed by the system from the reservoir and is the temperature of the external reservoir at a particular instant. The equality holds in the reversible case and the inequality holds in the irreversible case. The reversible case is used to introduce the entropy state function. This is because in cyclic process the variation of a state function is zero.

The Clausius Theorem is a mathematical explanation of the Second Law of Thermodynamics. Also referred to as the “Inequality of Clausius”, the theorem was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively. In more direct terms, the theorem gives us a way to determine if a cyclical process is reversible or irreversible. The Clausius Theorem provides a quantitative formula for understanding the second law.

Clausius was one of the first to work on the idea of entropy and is even responsible for giving it that name. What is now known as the Clausius Theorem was first published in 1862 in Clausius’ sixth memoir, “On the Application of the Theorem of the Equivalence of Transformations to Interior Work”. Clausius sought to show a proportional relationship between entropy and the energy flow by heating (δQ) into a system. In a system, this heat energy can be transformed into work, and work can be transformed into heat through a cyclical process. Clausius writes that “The algebraic sum of all the transformations occurring in a cyclical process can only be less than zero, or, as an extreme case, equal to nothing.” In other words, the equation


...
Wikipedia

...