*** Welcome to piglix ***

Classification of algebraic surfaces


In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known.

Max Noether began the systematic study of algebraic surfaces, and Guido Castelnuovo proved important parts of the classification. Federigo Enriques (1914, 1949) described the classification of complex projective surfaces. Kunihiko Kodaira (1964, 1966, 1968, 1968b) later extended the classification to include non-algebraic compact surfaces. The analogous classification of surfaces in characteristic p > 0 was begun by David Mumford (1969) and completed by Enrico Bombieri and David Mumford (1976, 1977); it is similar to the characteristic 0 projective case, except that one also gets singular and supersingular Enriques surfaces in characteristic 2, and quasi-hyperelliptic surfaces in characteristics 2 and 3.

The Enriques–Kodaira classification of compact complex surfaces states that every nonsingular minimal compact complex surface is of exactly one of the 10 types listed on this page; in other words, it is one of the rational, ruled (genus >0), type VII, K3, Enriques, Kodaira, toric, hyperelliptic, properly quasi-elliptic, or general type surfaces.

For the 9 classes of surfaces other than general type, there is a fairly complete description of what all the surfaces look like (which for class VII depends on the global spherical shell conjecture, still unproved in 2009). For surfaces of general type not much is known about their explicit classification, though many examples have been found.


...
Wikipedia

...