*** Welcome to piglix ***

Classical field


In physics, a field is a physical quantity, typically a number or tensor, that has a value for each point in space and time. For example, on a weather map, the surface wind velocity is described by assigning a vector to each point on a map. Each vector represents the speed and direction of the movement of air at that point. As another example, an electric field can be thought of as a "condition in space" emanating from an electric charge and extending throughout the whole of space. When a test electric charge is placed in this electric field, the particle accelerates due to a force. Physicists have found the notion of a field to be of such practical utility for the analysis of forces that they have come to think of a force as due to a field. The sloppy use of language to which physicists are prone may lead to confusion in the student as to whether field here means "region" or "single point force vector" within a given region or "a set of point force vectors" within a given region or "all point force vectors" within a given region (bear in mind the fact that Gravitational and Electromagnetic Forces have ranges that are theoretically infinite).

In the modern framework of the quantum theory of fields, even without referring to a test particle, a field occupies space, contains energy, and its presence precludes a classical "true vacuum". This led physicists to consider electromagnetic fields to be a physical entity, making the field concept a supporting paradigm of the edifice of modern physics. "The fact that the electromagnetic field can possess momentum and energy makes it very real ... a particle makes a field, and a field acts on another particle, and the field has such familiar properties as energy content and momentum, just as particles can have." In practice, the strength of most fields has been found to diminish with distance to the point of being undetectable. For instance the strength of many relevant classical fields, such as the gravitational field in Newton's theory of gravity or the electrostatic field in classical electromagnetism, is inversely proportional to the square of the distance from the source (i.e., they follow Gauss's law). One consequence is that the Earth's gravitational field quickly becomes undetectable on cosmic scales.


...
Wikipedia

...