*** Welcome to piglix ***

Circular layout


In graph drawing, a circular layout is a style of drawing that places the vertices of a graph on a circle, often evenly spaced so that they form the vertices of a regular polygon.

Circular layouts are a good fit for communications network topologies such as star or ring networks, and for the cyclic parts of metabolic networks. For graphs with a known Hamiltonian cycle, a circular layout allows the cycle to be depicted as the circle, and in this way circular layouts form the basis of the LCF notation for Hamiltonian cubic graphs.

A circular layout may be used on its own for an entire graph drawing, but it also may be used as the layout for smaller clusters of vertices within a larger graph drawing, such as its biconnected components, clusters of genes in a gene interaction graph, or natural subgroups within a social network. If multiple vertex circles are used in this way, other methods such as force-directed graph drawing may be used to arrange the clusters.

One advantage of a circular layout in some of these applications, such as bioinformatics or social network visualization, is its neutrality: by placing all vertices at equal distances from each other and from the center of the drawing, none is given a privileged position, countering the tendency of viewers to perceive more centrally located nodes as being more important.

The edges of the drawing may be depicted as chords of the circle, as circular arcs (possibly perpendicular to the vertex circle, so that the edges model lines of the Poincaré disk model of hyperbolic geometry), or as other types of curve.


...
Wikipedia

...